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A comprehensive assessment of a disinfectant product often entails multi-laboratory testing, in 
which case the individual test outcomes may be averaged across the laboratories. The article KSA-
SM-13 (2013) showed how to average across laboratories for a study with balanced data. The term 
“balanced data“ indicates that each laboratory conducted the same number of tests, whereas 
“unbalanced data” indicates that the number of replicate tests was not the same for all laboratories 
and may in fact be quite different (Searle et al. 1992). Most multi-laboratory disinfectant efficacy 
studies are purposely designed to produce balanced data, but even the best plan can go awry, such 
as when it belatedly is discovered that some tests were flawed, leaving the investigators with an 
unbalanced data set. Some studies are conducted with prior knowledge that the data will be 
unbalanced, e.g., a study based on aggregated test results from the data archives of several 
laboratories. For unbalanced data, several different averaging techniques have been proposed by 
statisticians (Cochran 1954; Iyer et al. 2004).  
 
This article is a review of techniques for averaging across laboratories. We describe and compare 
popular averaging techniques, and recommend the one that seems most appropriate in the context 
of disinfectant testing. The recommendation is based on the statistical literature and our many 
years of experience in analyzing data from multi-laboratory studies.  We assume that all 
disinfectant tests conducted by all laboratories were judged by the study director to follow the pre-
specified test protocol closely enough to justify calculation of an overall average. 
 
To illustrate the issues, we use two unbalanced data sets from multi-laboratory studies. The first is 
from a historical study of Use Dilution Method (UDM) test results, gathered from the archives of 
four laboratories (Tomasino et al. 2012). The UDM is a dried surface carrier test. The study was 
conducted to investigate the response quantity TestLD, the mean log density of viable cells for six 
untreated carriers (KSA SM-10 2012; Hamilton et al. 2013). The data pertain to tests conducted on 
Pseudomonas aeruginosa bacteria in the presence of an organic soil load. Table 1 shows the mean 
and the standard deviation (SD) of the TestLD values in each laboratory. In all, 185 UDM tests were 
conducted, with the number of tests per laboratory ranging from 36 to 62. 
 

Table 1. Mean and SD of TestLD for each laboratory; UDM tests against  
P. aeruginosa in the presence of an organic soil load (Tomasino et al. 2012) 

Lab index (i) No. of Tests (ni) Mean TestLD (Li) SD of TestLD (Si) 

1 36 6.71293 0.29341 
2 62 6.51515 0.27459 
3 46 6.90142 0.22578 
4 41 6.79364 0.24231 

 
The second data set is from a designed collaborative study of the Quantitative Carrier Test (QCT-1) 
in 14 laboratories (Sattar et al. 2005). QCT-1 is a dried surface carrier test. The study was 

http://www.biofilm.montana.edu/documents/KSA-SM-13.pdf
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conducted to evaluate the reproducibility of the log reduction (LR) disinfectant efficacy measure. 
We will use the data to calculate the overall average LR for a diluted quaternary ammonium compound 
when applied to Bacillus subtilis spores. Table 2 shows the mean and the standard deviation (SD) of 
the LR values in each laboratory. In all, 18 tests were conducted; 1 test in each of 10 laboratories, 2 
tests in each of 4 laboratories. 
 

Table 2. Mean and SD of LR for each laboratory; QCT-1 tests of a diluted 
quaternary ammonium compound applied to  B. subtilis spores (Sattar et al. 2012) 

Lab index (i) No. of Tests (ni) Mean LR (Li) SD of LR (Si) 
1 2 4.495 0.00130 
2 1 6.110 NA* 
3 1 6.330 NA 
4 1 3.550 NA 
5 2 6.955 0.25200 
6 2 7.350 1.84300 
7 1 5.750 NA 
8 1 6.430 NA 
9 1 7.760 NA 
10 1 5.340 NA 
11 2 5.685 0.00005 
12 1 7.760 NA 
13 1 5.820 NA 
14 1 4.910 NA 

*NA is Not Available; ni = 1 
 

 
 
 

Two Averages: Mean of Laboratory Means (MLM) and Grand Mean (GM) 
 
Let i denote the laboratory index. Let I denote the number of laboratories in the study. Note that I = 
4 for Table 1 and I = 14 for Table 2. For laboratory i, let ni denote the number of replicate tests. Let j 
denote the jth replicate test in a laboratory. Let Yij denote the response quantity for replicate test j in 
laboratory i, where j = 1, 2, …, ni and i = 1, 2, …, I. In the context of Table 1, Y is an observed TestLD 
value; in the context of Table 2, Y is an observed LR value. For laboratory i, Li denotes the mean of Yij 
values across the ni tests, and Si denotes the SD of Yij values across the ni  tests. Let N denote the  
total number of tests across all laboratories, 𝑁𝑁 =  ∑ 𝑛𝑛𝑖𝑖𝐼𝐼

𝑖𝑖=1 . Let MLM denote the mean of laboratory  
means, 𝐌𝐌𝐌𝐌𝐌𝐌 =  ∑ 𝐿𝐿𝑖𝑖𝐼𝐼

𝑖𝑖=1 /𝐼𝐼. For Table 1, MLM = 6.73079, the arithmetic average of the four  
               laboratory means. Let GM denote the grand mean of the 

N response quantities, 𝐆𝐆𝐌𝐌 =  ∑ ∑ 𝑌𝑌𝑖𝑖𝑖𝑖/𝑁𝑁𝑛𝑛𝑖𝑖
𝑖𝑖=1

𝐼𝐼
𝑖𝑖=1 . For  

Table 1, GM = 6.71140, the arithmetic average of the 
185 TestLD values.  For Table 2, MLM = 6.0175 and GM 
= 6.0406. Calculated averages for the examples are 
summarized in Table 3, along with a third average, 
REMLM, described below. The two obvious choices for 
calculating the average across laboratories (MLM and 
GM) yield different answers for unbalanced data. The 
difference depends on the extent to which the data are 
unbalanced; i.e., how much the ni numbers differ. In 
neither of the examples are the data greatly unbalanced. 
 
 

Table 3. Estimates & SEs for data in Tables 1 & 2; SE 
calculation formulas in Appendix equations (A3-A5) 
Estimator Estimate SE(Estimate) 

Data in Table 1 
MLM 6.7308 0.08239 

REMLM 6.7300 0.08238 
GM 6.7114 0.08401 

   Data in Table 2 
MLM 6.0175 0.32669 

REMLM 6.0231 0.32560 
GM 6.0406 0.33621 
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Which is better, MLM or GM? 
 
The question that heads this section arises only when the data are unbalanced because MLM and 
GM are identical for balanced data. Let μ denote the true mean response across the entire 
population of laboratories. The goal is to find an accurate and precise estimator of μ. Both MLM and 
GM are accurate in the sense of being consistent, unbiased estimators of μ. However, the two 
estimators are not equally precise. The preferable estimator is the less imprecise one, i.e., the 
estimator that has a smaller variance (variance measures imprecision). To compare the variances of 
MLM and GM, we have developed a comparison tool, displayed as equation (1). 
 
For the observed quantity Y (e.g., TestLD or LR), let 𝜎𝜎𝐿𝐿2 denote the true variance among laboratories 
and let 𝜎𝜎𝑟𝑟2 denote the true repeatability variance (Appendix equation (A1)). Let 𝜎𝜎𝑀𝑀𝐿𝐿𝑀𝑀2  and 𝜎𝜎𝐺𝐺𝑀𝑀2  
denote the true variances of the estimators MLM and GM, respectively.  Recently, Levin and Leu 
(2013) published a formula for 𝜎𝜎𝐺𝐺𝑀𝑀2  that makes the variance comparison relatively easy. From their 
work, we derive a quantity Q, calculated from the numbers of tests n1, …, nI (Appendix equation 
(A2)), with the following property: 
 

If 𝜎𝜎𝑟𝑟2 < 𝑄𝑄 ∙ 𝜎𝜎𝐿𝐿2 then  𝜎𝜎𝑀𝑀𝐿𝐿𝑀𝑀2 <  𝜎𝜎𝐺𝐺𝑀𝑀2 , and conversely.      (1) 
 
In words, MLM is preferable to GM if and only if Q times the variance among laboratories is larger 
than the repeatability variance.  
 
For the ni values in Table 1, Q = 50.145.  For the data in Table 1, the estimated variance among 
laboratories is SL2 = 0.025628 and the estimated repeatability variance is Sr2 = 0.067695 (Tomasino 
et al. 2012). Substituting these estimates for the corresponding parameters in equation (1), we find 
that Sr2 = 0.068 < 1.304 = Q∙ SL2, leading us to surmise that MLM is better than GM for the numbers 
of tests ni for the Table 1 data.  
 
For the ni values in Table 2, Q = 1.5556.  For the data in Table 2, the estimated variance among 
laboratories is SL2 = 1.0494 and the estimated repeatability variance is Sr2 = 0.51889. Substituting 
these estimates for the corresponding parameters in equation (1), we find that Sr2 = 0.519 < 1.632 = 
Q∙ SL2, leading us to surmise that MLM is better than GM for the numbers of tests ni for the Table 2 
data.  
 
The statement displayed in equation (1) is consistent with the long-known result that the MLM is a 
better estimator than GM except when the variance among the laboratories is nearly zero (Cochran 
1954; Birkes et al. 1981). For the Table 1 example, if the variance among laboratories had turned 
out to be zero, that would indicate the TestLD values were not affected by what lab did the test. In 
that case, we could pool the data into one big sample and use the GM as the estimator;  the effective 
sample size would be 185. However, most interlaboratory studies of disinfectant tests produce a 
significant interlaboratory variance, as for the Table 1 example, in which case MLM will be 
preferred over GM. Intuitively speaking, when the variance among laboratories is large, the 
information content of the data depends more on the number of laboratories than on the total 
number of tests. In the Table 1 example, the effective sample size is I = 4, the number of 
laboratories, not 195, the number of tests. Therefore, it makes sense to average the 4 laboratory 
means instead of averaging all 195 response quantities. 
 
Body weight measurements provide a convenient analogy. When your scale produces an 
unexpected weight, you might reweigh yourself a second or even a third time. Then, realizing that 
further readings will little alter the outcome, you walk away (wearing a smile or a grimace). 
Probably, the next day your weight will be closer to what you expect. You know from experience 
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that day-to-day variability is much greater than the variability among repeated readings within a 
few minutes. To get a good idea of your weight, you will average over days, and not attach extra 
importance to the day when you weighed yourself multiple times.  
 

An Alternative to MLM and GLM 
 
There are many alternative averaging techniques, but we will discuss only the most commonly 
mentioned one, which is a specific weighted average.  To calculate a weighted average, numerical 
weights are required; i.e., for each laboratory, a non-negative numerical weight must be specified 
by the analyst. Let wi denote the weight for laboratory i. Then WM, the weighted average of the 
laboratory means, is  
 

𝐖𝐖𝐌𝐌 =  ∑ 𝑤𝑤𝑖𝑖∙𝐿𝐿𝑖𝑖𝐼𝐼
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖
𝐼𝐼
𝑖𝑖=1

 .      (2) 

 
Note that GM and MLM can be expressed as weighted averages. If each weight equals 1 (or any 
other fixed positive number), then WM = MLM; if the weight for laboratory i is the corresponding 
number of tests, wi = ni, i = 1, …, I, then WM = GM (Cochran 1954; Searle et al. 1992).  
 
Statisticians have shown that there are optimal weights, “optimal” because they provide both the 
Best Linear Unbiased Estimate and the Maximum Likelihood Estimate (Cochran 1954; Piepho 
1996). The variance of the optimal estimator is never larger than the variances of GM and MLM. 
The optimal weights, denoted by Wi, i = 1, …, I, are displayed in equation (3) (Piepho 1996). The Wi 

weights differ only because the ni values differ among laboratories. 
 

𝑊𝑊𝑖𝑖 = �𝜎𝜎𝐿𝐿2 +  𝜎𝜎𝑟𝑟
2

𝑛𝑛𝑖𝑖
�
−1

.           (3) 
  
Unfortunately, the Wi weights are impractical because the numerical values of 𝜎𝜎𝐿𝐿2 and 𝜎𝜎𝑟𝑟2 are 
unknown. However, the variance parameters can be estimated from the observed data (KSA-SM-13 
2013). Denote the observed variance estimates by S𝐿𝐿2 and S𝑟𝑟2. The variance estimates can be 
substituted for the corresponding parameters in equation (3), to produce 𝑊𝑊�𝑖𝑖 weights of equation 
(4). If S𝐿𝐿2 is near zero, then the WM based on wi =  𝑊𝑊�𝑖𝑖 is essentially the GM; if S𝐿𝐿2 is large, then WM is 
essentially the MLM. In essence, the 𝑊𝑊�𝑖𝑖-weighted WM blends MLM and GM, and it is the preferred 
estimator, especially when S𝐿𝐿2 is neither zero nor “large” (Cochran 1954; Birkes et al. 1981). 
 

𝑊𝑊�𝑖𝑖 = �𝑆𝑆𝐿𝐿2 +  𝑆𝑆𝑟𝑟
2

𝑛𝑛𝑖𝑖
�
−1

.          (4) 
 

We recommend the restricted maximum likelihood (REML) method for calculating S𝐿𝐿2 and S𝑟𝑟2 (KSA-
SM-13 2013; Hamilton et al. 2013). Let REMLM denote the REML mean; i.e., REMLM is the  𝑊𝑊�𝑖𝑖-
weighted WM in equation (2) with weights calculated by equation (4) using REML variance 
estimates (Rukhin et al. 2000; Kacker 2004).  
 
For the data of Table 1, REMLM is 6.72998 (Table 3). Note that, for the Table 1 data, the difference 
between MLM and REMLM is quite small, less than 0.001. Also the standard errors of the mean 
(Appendix equations (A3)-(A5)) are not different, SE(MLM) = 0.08239 and SE(REMLM) = 0.08238 
(Table 3). For the Table 1 study, the large S𝐿𝐿2  relative to  S𝑟𝑟2 and the degree of unbalance (as 
represented by Q) indicate that MLM is an acceptable estimator of μ.  
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For the data of Table 2, REMLM is 6.0231. Note that, for the Table 2 data, REMLM is between MLM 
and GM, but close to MLM. The standard errors of the estimates for MLM and REMLM are almost 
the same, SE(MLM) = 0.327and SE(REMLM) = 0.326 (Table 3). For the Table 2 data, MLM is easier 
to calculate and explain than REMLM and provides essentially the same result as REMLM. We 
believe that MLM is sufficiently reliable for use in estimating μ if one had insufficient computational 
resources for calculating REMLM. 
 
Although, more computationally complex, the best analysis of unbalanced data is a REML method 
analysis of variance (Searle et al. 1992). Computer software can produce S𝐿𝐿2, S𝑟𝑟2, REMLM, and 
SE(REMLM). Some computational guidance is provided in the next section. 
 

Calculating REMLM using the statistical programming language R 
 
The section headed “Statistical calculations using the statistical programming language R” in KSA-
SM-13 (2013) shows how to use the package nlme and the function lme to perform a REML 
method analysis. The computer code is the same for unbalanced data as for balanced data. 
 
When the lme function is used to analyze the data set summarized in Table 1, using R-language 
computer code copied from KSA-SM-13 (2013), the Fixed Effects component of the output is: 
 
Fixed effects: TestLD ~ 1  
               Value  Std.Error  DF  t-value p-value 
(Intercept) 6.729978 0.08238387 181 81.69049       0 

 
When the lme function is used to analyze the data set summarized in Table 2, the Fixed Effects 
component of the output is: 
 
Fixed effects: LR ~ 1  
               Value Std.Error DF  t-value p-value 
(Intercept) 6.023061 0.3255979 14 18.49846       0 

 
In each case, the Value is the REMLM and the Std.Error is the SE(REMLM). It is a bonus that the 
KSA-SM-13 (2013) R code for calculating  S𝐿𝐿2 and S𝑟𝑟2 also produces the most reliable estimate of the 
overall mean μ and the associated standard error of the estimate. Note that we have crossed out the 
DF   t-value   p-value results in the output. In our opinion, those values should be ignored. 
For t-statistic confidence interval calculations, it is appropriate to use I-1 for the degrees of freedom 
(DF); that is, we suggest DF = 3 for the Table 1 data and DF = 13 for the Table 2 data. This 
recommendation is somewhat conservative in that the confidence interval will be a little wider than 
would be produced by the generalized confidence interval procedure of Iyer et al. (2004) which is 
computationally intensive because of the necessary computer simulations. 
 

Recommendations 
 
We recommend estimating μ with the REMLM average which is automatically calculated by the 
REML analysis of variance calculations for unbalanced data (KSA-SM-13 2013). Among easily 
calculated estimates, MLM, the mean of laboratory means, is a reliable estimator of μ for practically 
any unbalanced, multi-laboratory, disinfectant test data set. The MLM is more precise than the GM 
except when there is a negligibly small variance among laboratories, a rare and unexpected 
circumstance because a multi-laboratory study is expensive and will be conducted only when prior 
information indicates that the variability among laboratories is large.  Although this article is 
written for disinfectant test data, the issues, notation, and formulas apply to any data set that can be 
modeled with a one-factor random effects linear model. 
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Appendix 

One-factor random effects linear model 
 
The Levin and Leu (2013) formula (that we used to derive equation (1)), the REMLM estimate, and 
conventional analysis of variance calculations are based on a one-factor random effects linear 
model for multi-laboratory data. Let j denote the jth replicate test in a laboratory. Let Yij denote the 
measured response for replicate test j in laboratory i, where j = 1, 2, …, ni and i = 1, 2, …, I. In the 
context of our first example, Y is an observed TestLD value. The true, unknown mean response for 
laboratory i is denoted by λi and the true mean of λ across all laboratories in the population is 
denoted by μ. The population variance of the laboratory means (i.e., of the λ values) is denoted by 
σL2 and it is called the “true variance among laboratories.”  Let εij denote the deviation of the jth 
replicate outcome from the true mean for the ith laboratory, λi. The variance of these deviations is 
denoted by σr2 and it is called the “true repeatability variance” (or alternatively, the “within-
laboratory variance”). The model assumes that the true repeatability variance is homogeneous 
across laboratories. To evaluate this homogeneity assumption, compare the intra-laboratory SD 
values; e.g., see the final column of Table 1. 
 
The variance of Yij is denoted by σR2 and it is called the “true reproducibility variance.” Under this 
model σR2 = σL2 + σr2; i.e., the true reproducibility variance is the sum of the true variance among 
laboratories and the true repeatability variance. This notation is the same as used in Table 1 of KSA-
SM-14. The one-factor random effects linear model can be expressed succinctly as follows: 
 

Yij = λi + εij, where      (A1) 
 all λi and εij values are mutually statistically independent random variables,  
 λi has mean μ and variance σL2, and 
 εij has mean 0 and variance σr2. 
 
For statistical inference purposes, an additional assumption is that all λi and εij values are normally 
distributed random variables. In our experience, disinfectant efficacy testing data are suited to the 
normality assumption.  
 
The parameters of the model are λi for i = 1, …, I, μ, σL2, and σr2. Parameters are conceptual values 
that we will never know exactly. However, we can estimate the numerical value of each parameter 
by applying analysis of variance techniques to the observed data, as described in KSA-SM-13 
(2013). That is, Li estimates λi for i = 1, …, I; REMLM estimates μ, SL2 estimates σL2, Sr2 estimates σr2, 
and SR2 = SL2 + Sr2 estimates σR2 = σL2 + σr2. 
 
Q of equation (2) 
 
The quantity Q is a function of the numbers of tests in the I individual laboratories. For these 
numbers, let 𝑛𝑛�𝑎𝑎 denote the arithmetic mean, 𝑛𝑛�𝑎𝑎 =  ∑ 𝑛𝑛𝑖𝑖𝐼𝐼

𝑖𝑖=1 /𝐼𝐼,  𝑛𝑛�ℎ denote the harmonic mean, 𝑛𝑛�ℎ =
 �∑ 𝑛𝑛𝑖𝑖−1𝐼𝐼

𝑖𝑖=1 /𝐼𝐼�−1,  and 𝑛𝑛�𝑞𝑞 denote the quadratic mean (also called root-mean-square), 𝑛𝑛�𝑞𝑞 =
 �∑ 𝑛𝑛𝑖𝑖2𝐼𝐼

𝑖𝑖=1 /𝐼𝐼�1/2.  For balanced data, these three means are equal. For unbalanced data, the well-
known inequality for general means shows that 𝑛𝑛�ℎ < 𝑛𝑛�𝑎𝑎 < 𝑛𝑛�𝑞𝑞 (Beckenbach and Bellman 1965).  The 
quantity Q is defined only for unbalanced data (equation A2). 
 

Q = ( 𝑛𝑛�ℎ∙ ( 𝑛𝑛�𝑞𝑞2 - 𝑛𝑛�𝑎𝑎2)) / (𝑛𝑛�𝑎𝑎∙ (𝑛𝑛�𝑎𝑎 - 𝑛𝑛�ℎ))    (A2) 
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Formulas for the variance and standard error of the estimate 

 

For MLM, see Miller (1986):  Var(𝐌𝐌𝐌𝐌𝐌𝐌) = 𝜎𝜎𝐿𝐿
2

𝐼𝐼
+ 𝜎𝜎𝑟𝑟2

𝐼𝐼∙ 𝑛𝑛�ℎ
 ;  

 

   SE(𝐌𝐌𝐌𝐌𝐌𝐌) = �𝑆𝑆𝐿𝐿
2

𝐼𝐼
+ 𝑆𝑆𝑟𝑟2

𝐼𝐼∙ 𝑛𝑛�ℎ
 .      (A3) 

 
For GM, see Levin and Leu(2013):  Var(𝐆𝐆𝐌𝐌) = �𝜎𝜎𝐿𝐿

2

𝐼𝐼
� ∙ 𝑛𝑛�𝑞𝑞

2

 𝑛𝑛�𝑎𝑎2
+ 𝜎𝜎𝑟𝑟2

𝐼𝐼∙ 𝑛𝑛�𝑎𝑎
 ;  

 

   SE(𝐆𝐆𝐌𝐌) = ��𝑆𝑆𝐿𝐿
2

𝐼𝐼
� ∙

 𝑛𝑛�𝑞𝑞2

 𝑛𝑛�𝑎𝑎2
+ 𝑆𝑆𝑟𝑟2

𝐼𝐼∙ 𝑛𝑛�𝑎𝑎
 .     (A4) 

 
For the weighted average WM calculated with the weights Wi of equation (3), see Cochran (1954): 
 

         Var(𝐖𝐖𝐌𝐌) = ∑ � 1

𝜎𝜎𝐿𝐿
2+𝜎𝜎𝑟𝑟

2

𝑛𝑛𝑖𝑖

�𝐼𝐼
𝑖𝑖=1  . 

The standard error for REMLM is �Var(𝐖𝐖𝐌𝐌) with the variance parameters replaced by the 
corresponding REML variance estimates; see Kacker (2004): 
 

  SE(𝐑𝐑𝐑𝐑𝐌𝐌𝐌𝐌𝐌𝐌) = �∑ � 1

𝑆𝑆𝐿𝐿
2+𝑆𝑆𝑟𝑟

2

𝑛𝑛𝑖𝑖

�𝐼𝐼
𝑖𝑖=1  .      (A5) 
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